什么叫正交矩阵(正交矩阵为什么叫正交矩阵)

昕阳小编 145 0

正交矩阵为什么叫正交?正交的几何意义是什么?

正交矩阵:是指构成该矩阵的行向量组与列向量组是两两正交的,正交矩阵的行列式的值是1....

什么是正交矩阵,和实对称矩阵有什么不同?

正交矩阵的定义:如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。

正交矩阵和实对称矩阵的区别:

1、实对称矩阵的定义是:如果有n阶矩阵A,其各个元素都为实数,矩阵A的转置等于其本身,则称A为实对称矩阵。

2、正交变换e在规范正交基下的矩阵是正交矩阵,满足U*U’=U’*U=I

对称变换e在规范正交基下的矩阵是对称矩阵,满足A’=A

3、 转换矩阵是正交矩阵不代表被转换矩阵一定是实对称矩阵 反过来 实对称矩阵的相似对角化也不一定非要正交矩阵。

扩展资料:

正交矩阵的性质:

1、方阵A正交的充要条件是A的行(列) 向量组是单位正交向量组。

2、 方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基。

3、A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量。

4、 A的列向量组也是正交单位向量组。

实对称矩阵的性质:

1.实对称矩阵特征值为实数。

2..实对称矩阵一定有N个线性无关的特征向量。

3..实对称矩阵不同特征值对应的特征向量相互正交。

参考资料来源:百度百科-正交矩阵

参考资料来源:百度百科-实对称矩阵

什么是正交矩阵

如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”。)或A′A=E,则n阶实矩阵A称为正交矩阵

例如:

1 0 1 0

矩阵A: 0 1 A的转置: 0 1 此时 AA'=E

故A本身是正交矩阵

由于AA'=E 由逆矩阵定义 若AB=E 则B为A的逆矩阵 可以知道 A'为A的逆矩阵

也就是说正交矩阵本身必然是可逆矩阵

若A是正交矩阵则A的n个行(列)向量是n维向量空间的一组标准正交基【即线性不相关】

扩展资料

在矩阵论中,正交矩阵(orthogonal matrix)是一个方块矩阵Q,其元素为实数,而且行与列皆为正交的单位向量,使得该矩阵的转置矩阵为其逆矩阵。

作为一个线性映射(变换矩阵),正交矩阵保持距离不变,所以它是一个保距映射,具体例子为旋转与镜射。

行列式值为+1的正交矩阵,称为特殊正交矩阵,它是一个旋转矩阵。

行列式值为-1的正交矩阵,称为瑕旋转矩阵。瑕旋转是旋转加上镜射。镜射也是一种瑕旋转。

参考资料:百度百科-正交矩阵

什么叫正交矩阵(正交矩阵为什么叫正交矩阵)-第1张图片-昕阳网

什么叫做正交矩阵

如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵[1]。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。尽管我们在这里只考虑实数矩阵,但这个定义可用于其元素来自任何域的矩阵。正交矩阵毕竟是从内积自然引出的,所以对于复数的矩阵这导致了归一要求。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但也存在一种复正交矩阵,这种复正交矩阵不是酉矩阵。

扩展资料

定义

如果:AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”。)或ATA=E,则n阶实矩阵A称为正交矩阵,若A为正交阵,则满足以下条件[2] [3] :

1)AT是正交矩阵

2)(E为单位矩阵)

3)AT的各行是单位向量且两两正交

4)AT的各列是单位向量且两两正交

5)(Ax,Ay)=(x,y)x,y∈R

6)|A|=1或-1

7)

8)正交矩阵通常用字母Q表示。

(9)举例:

若A=[r11r12r13;r21r22r23;r31r32r33],则有:

定理

在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。

1.方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;

2.方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;

3.A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;

4.A的列向量组也是正交单位向量组。

5.正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵[4] 。

以上文章内容就是对什么叫正交矩阵和正交矩阵为什么叫正交矩阵的介绍到此就结束了,希望能够帮助到大家?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签: 什么叫正交矩阵

抱歉,评论功能暂时关闭!