互质是什么概念(互质是什么概念和特点)

昕阳小编 146 0

互质是什么意思?

互质是公约数只有1的两个整数,叫做互质整数。公约数只有1的两个自然数,叫做互质自然数,后者是前者的特殊情形。

例如8,10的最大公因数是2,不是1,因此不是整数互质。7,11,13的最大公因数是1,因此这是整数互质。5和5不互质,因为5和5的公因数有1、5。

扩展资料

判别方法

(1)两个不同的质数一定是互质数。

例如,2与7、13与19。

(2)一个质数,另一个不为它的倍数,这两个数为互质数。

例如,3与10、5与 26。

(3)1不是质数也不是合数,它和任何一个自然数(1本身除外)在一起都是互质数。如1和9908。

(4)相邻的两个自然数是互质数。如 15与 16。

(5)相邻的两个奇数是互质数。如 49与 51。

(6)较大数是质数的两个数是互质数。如97与88。

(7)两个数都是合数(二数差又较大),较小数所有的质因数,都不是较大数的约数,这两个数是互质数。

如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。

(8)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是较小数的约数,这两个数是互质数。如85和78。85-78=7,7不是78的约数,这两个数是互质数。

(9)两个数都是合数,较大数除以较小数的余数(不为“0”且大于“ 1”)的所有质因数,都不是较小数的约数,这两个数是互质数。如 462与 221

462÷221=2……20,

20=2×2×5。

2、5都不是221的约数,这两个数是互质数。

(10)减除法。如255与182。

255-182=73,观察知 73182。

182-(73×2)=36,显然 3673。

73-(36×2)=1,

(255,182)=1。

所以这两个数是互质数。

三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。

互质是什么意思?

互质

hùzhì

[relatively

prime]

两个数只有一个公约数1时,它们的关系叫做互质。如3和11互质。

5和5不互质,因为5和5的公因数有1、5。

1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。1只有一个因数(所以1既不是质数(素数),也不是合数),无法再找到1和其他数的别的公因数了,

所以1和任何数都互质。

什么叫互质

如果两个数的公约数有且只有1那么就说它们互质,这是数论里的最基本概念.通俗的讲如果分数m/n不可约,那么就说m,n互质.互质是对自然数来讲的即(0除外);1与任何自然数均互质;相同数之间不互质;不等素数之间一定互质.

eg:

6,9的最大公约数是3,不是1,因此不互质.3,11的最大公约数是1,因此这三个数互质.

2,9,17三个数亦互质

显然,任何有理数都可用m/n表示,其中m,n为互质整数.

互质是什么意思啊

互质是公约数只有1的两个整数。

互质,若N个整数的最大公因数是1,则称这N个整数互质。

例如8,10的最大公因数是2,不是1,因此不是整数互质。

7,11,13的最大公因数是1,因此这是整数互质。

5和5不互质,因为5和5的公因数有1、5。

1和任何数都成倍数关系,但和任何数都互质。因为1的因数只有1,而互质数的原则是:只要两数的公因数只有1时,就说两数是互质数。因为1只有一个因数所以1既不是质数(素数),也不是合数,无法再找到1和其他数的别的公因数了。1和-1与所有整数互素,而且它们是唯一与0互素的整数。

互质数的写法:如c与m互质,则写作(c,m)=1。

小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”

这里所说的“两个数”是指自然数。

“公约数只有 1”,不能误说成“没有公约数。”

这里有一个误区,认为0不与任何数互质。严格地按照互质的定义来看0与1,-1均互质,通过任意有理数的表示方式a/b(a,b互质且b为正整数),同样可以得出0与1,-1均必须互质,否则0不是有理数。

互质的判别方法

(1)两个不同的质数一定是互质数。

例如,2与7、13与19。

(2)一个质数,另一个不为它的倍数,这两个数为互质数。

例如,3与10、5与 26。

(3)1不是质数也不是合数,它和任何一个自然数(1本身除外)在一起都是互质数。如1和9908。

(4)相邻的两个自然数是互质数。如 15与 16。

(5)相邻的两个奇数是互质数。如 49与 51。

(6)较大数是质数的两个数是互质数。如97与88。

(7)两个数都是合数(二数差又较大),较小数所有的质因数,都不是较大数的约数,这两个数是互质数。

如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。

(8)两个数都是合数(二数差较小),这两个数的差的所有质因数都不是较小数的约数,这两个数是互质数。如85和78。85-78=7,7不是78的约数,这两个数是互质数。

(9)两个数都是合数,较大数除以较小数的余数(不为“0”且大于“ 1”)的所有质因数,都不是较小数的约数,这两个数是互质数。如 462与 221

462÷221=2……20,20=2×2×5。

2、5都不是221的约数,这两个数是互质数。

(10)减除法。如255与182。

255-182=73,观察知 7382。

182-(73×2)=36,显然 3673。

73-(36×2)=1,

(255,182)=1。

所以这两个数是互质数。

三个或三个以上自然数互质有两种不同的情况:一种是这些成互质数的自然数是两两互质的。如2、3、5。另一种不是两两互质的。如6、8、9。

互质是什么意思 互质释义

1、互质是公约数只有1的两个整数,叫做互质整数。公约数只有1的两个自然数,叫做互质自然数,后者是前者的特殊情形。

2、互质数的写法:如c与m互质,则写作(c,m)=1。

小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。

互质是什么概念(互质是什么概念和特点)-第1张图片-昕阳网

以上文章内容就是对互质是什么概念和互质是什么概念和特点的介绍到此就结束了,希望能够帮助到大家?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签: 互质是什么概念

抱歉,评论功能暂时关闭!